Extending SSM to MIPv6 —
Problems, Solutions and Improvements

Thomas C. Schmidt1,2 \hspace{10pt} Matthias Wählisch2
\{schmidt, mw\}@fhtw-berlin.de

1HAW Hamburg & 2FHTW Berlin

TERENA Networking Conference 2005
Agenda

Review of Any Source and Source Specific Multicast

Problems of Mobile SSM

Approaches to Mobile SSM

Improvements

Conclusions & Outlook
ASM – Any Source Multicast

Join (∗, G)

- Receivers harvest traffic from any source in group
- Two types of routing protocols are around:

 - Dense
 - Router announces source by flooding
 - Sparse
 - Uses Rendezvous Points to establish new sources
 - RP forwards packets along *shared tree* to receiver
 - Short cut switches to *source based forwarding trees*
 - Inter-domain routing via Multicast Source Discovery Protocol or embedded RP in IPv6
 - Complex deployment and heavy load on infrastructure

- Currently mainly used within manageable domains
SSM – Source Specific Multicast

Figure: ASM

Figure: SSM

- Receive traffic from source known via SDR, web sites, etc.
- Source based distribution tree constructed directly from RPF
- No shared trees or RPs required
- Immediately optimized tree and traffic flow resp.
- Well suited for interdomain applications
- Applications: streaming (radio, virtual lectures, ...)
Applications – Mobile?!
Mobile IPv6 (RFC 3775)
Problems of Mobile Multicast Sources

General:
- Delivery tree is rooted at the sender
- Tree collapses after movement
- Slow tree reconstruction
- Applications identify streams by unicast source address
- Source does not know single receivers

SSM specific:
- Dynamic source address
 - Source has to inform the receivers about any new Care of Address
 - Receivers have to use the current source IP address to join source based forwarding tree
- Note: Source cannot control updates at receivers
Address Duality Problem

Addresses carry dual meaning of logical and topological identifiers

- Logical address is Home Address (HoA)
- Topological address is Care of Address (CoA)
- Mcast states at receivers & routers are \((S, G)\)
- What is \(S\) ?

Multicast members (receivers & routers) need to account for this address duality!
Solutions in MIPv6 for ASM

- **Bi-directional tunneling**
 - Multicast streams are tunneled via Home Agent to receivers
 - At any time correct information about (static) source address
 - Inefficient triangular routing

- **Remote subscription**
 - On handover mobile source changes to nCoA
 - Reconstruction of delivery tree
 - Change of address not application transparent

- **Improvements: Agent based approaches**
 - Fixed agents anchor distribution trees
 - On handover new tree constructed in parallel
 - Old tree used for data delivery until source initiated switchover
SSM Differs

- Only Bi-directional tunneling extends to SSM
- SSM requires an ‘active’ subscription by receivers to the new source address of the sender because old router states invalidate
 - Remote subscription: traffic will not reach receivers
 - Agent based approaches: SSM cannot be solely initiated by source
Approaches to Mobile SSM (1) – Thaler, Dec. 2001

Idea

1. Mobile source announces current CoA via \((\text{HomeAddress}, G)\)-tree
2. Receivers join \((\text{CoA}, G)\) after \((\text{HomeAddress}, G)\)
3. On source movement \text{CoA} update announcement via \((\text{HomeAddress}, G)\)-tree
4. Application transparency analogous to MIPv6

Problems

- New receivers have to wait for the update cycle
- Resubscription on handover is not smooth
- Overhead: 1 administration tree + 1 delivery tree
Approaches for Mobile SSM (2) – Jelger & Noel, 2002

Idea

- Construct new triple (HoA, cCoA, G) for session announcement, e.g. via SDR
- Introduce new Binding Update sub-option “SSM-Source Handover Notification”
- Source setup tunnel to previous AR and send BU via (cCoA, G)-tree
- BU includes the new Care of Address (nCoA) of the source
- Continuous data reception by employing anchor points
 - New distribution tree is constructed in parallel to (cCoA, G)-tree

Problems

- Every movement results in an update of the session announcement for new receivers
- Unlimited number of ‘historic’ delivery trees!
Improvements (1) – Initial discovery of current Care of Address

- We need a mechanism transparent to applications
- Borrow Care of Address discovery from unicast
- MIPv6 provides *Binding Refresh Request Message*:
 - “always sent to the home address of the mobile node”
 - “the mobile node should to be careful to not respond to Binding Refresh Requests for addresses not in the Binding Update List”

Advantage

Independent of additional mcast trees or updated session information.
Improvements (1) – Initial discovery of current CoA

Algorithm

Start with tupel \((S = \text{HomeAddress}, G)\) as in regular SSM, then:

1. Application joins \((S, G)\)
2. Lookup Binding Cache for \(S\)
3. No Entry
 - 3.1 Send Binding Refresh Request
4. Entry found
 - 4.1 Initiate join \((CoA, G)\)

How can we update the receivers and the router states after a handoff?
Improvements (2) – New Routing Protocol: Tree Morphing

- Account for address duality: use \((HoA, CoA, G)\)-states
- Submit multicast data from nDR through pDR using source routing
- Send state update message in Hop-by-Hop option message – piggybacked by first data packet(s)
- Discover potential shortcuts by RPF-checks
- Optimise distribution tree incrementally

Advantages

- No data encapsulation at any stage!
- All routers and receivers along the path will learn new CoA
- Self reconstructing delivery trees
Improvements (2) – Tree Morphing

Examples

Figure: Tree Elongation
Improvements (2) – Tree Morphing

Examples

Figure: Tree Optimisation
Conclusions & Outlook

- SSM paves the way for wide multicast deployment
- An Overview of possible approaches to deal with mobility in SSM was presented
- There is an easy and robust mechanism to get the current source IP address
- Introduction of an efficient routing protocol for Mobile SSM

Outlook:

- Simulation and formal analysis of the tree morphing routing protocol